login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes whose prime factors are distinct and the reversal of one factor is equal to the other.
8

%I #17 Dec 26 2018 21:35:30

%S 403,1207,2701,7663,35143,75007,117907,127087,140209,173809,197209,

%T 247021,257821,342127,382387,643063,692443,743623,1226221,1341331,

%U 1626151,1698661,1739161,2073991,2138791,2528611,2561011,3321133

%N Semiprimes whose prime factors are distinct and the reversal of one factor is equal to the other.

%C Products of emirp pairs, sorted. - _Lekraj Beedassy_, Jan 10 2008

%H Robert Israel, <a href="/A083815/b083815.txt">Table of n, a(n) for n = 1..10000</a>

%e a(2)= 1207 = 17 * 71.

%p revdigs:= proc(n) local i,L;

%p L:= convert(n,base,10);

%p add(L[-i]*10^(i-1),i=1..nops(L))

%p end proc:

%p f:= proc(p) local r;

%p if not isprime(p) then return NULL fi;

%p r:= revdigs(p);

%p if r > p and isprime(r) then r*p fi

%p end proc:

%p sort(map(f, [seq(i,i=13..9999,2)])); # _Robert Israel_, Dec 26 2018

%Y Cf. A001358, A006567, A109308.

%K base,nonn

%O 1,1

%A _Jason Earls_, Jun 17 2003

%E More terms from _Ray Chandler_, Jul 22 2003