Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 29 2017 11:48:26
%S 1729,2821,6601,8911,15841,29341,41041,46657,52633,63973,75361,101101,
%T 115921,126217,162401,172081,188461,252601,294409,314821,334153,
%U 340561,399001,410041,488881,512461,530881,552721,658801,670033,721801,748657
%N Pseudoprimes to bases 2, 3 and 5.
%C a(n) = n-th positive integer k(>1) such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k)
%C See A153580 for numbers k > 1 such that 2^k-2, 3^k-3 and 5^k-5 are all divisible by k but k is not a Carmichael number (A002997).
%C Note that a(1)=1729 is the Hardy-Ramanujan number. - _Omar E. Pol_, Jan 18 2009
%H Charles R Greathouse IV, <a href="/A083737/b083737.txt">Table of n, a(n) for n = 1..10000</a> (first 102 from R. J. Mathar)
%H J. Bernheiden, <a href="http://www.mathe-schule.de/download/pdf/Primzahl/PSP.pdf">Pseudoprimes (Text in German)</a>
%H F. Richman, <a href="http://math.fau.edu/Richman/carm.htm">Primality testing with Fermat's little theorem</a>
%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>
%e a(1)=1729 since it is the first number such that 2^(k-1) == 1 (mod k), 3^(k-1) == 1 (mod k) and 5^(k-1) == 1 (mod k).
%t Select[ Range[838200], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 & ]
%o (PARI) is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1 \\ _Charles R Greathouse IV_, Apr 12 2012
%Y Proper subset of A052155. Superset of A230722. Cf. A153580, A002997, A001235, A011541.
%K easy,nonn
%O 1,1
%A Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003
%E Edited by _Robert G. Wilson v_, May 06 2003
%E Edited by _N. J. A. Sloane_, Jan 14 2009