login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083696
a(n) = Sum_{r=0..2^(n-1)} (5^r/(2r)!)*Product_{k=0..2r-1} (2^n - k).
2
1, 6, 56, 6016, 72318976, 10460064284409856, 218825889667954898996994670329856, 95769539977943941232017762100658986141884645207653888255921750016
OFFSET
0,2
COMMENTS
Similar to A081459: a(n) is the numerator of the same mapping f(r) = (1/2)*(r + 5/r) but with initial value r=1.
LINKS
FORMULA
a(n)/A083697(n) converges to sqrt(5).
a(n) = a(n-1)^2 + 5*A083697(n-1)^2.
a(n) = 2^(2^n - 1) * Lucas(2^n). - Vaclav Kotesovec, Jan 08 2021
MATHEMATICA
Table[Sum[Product[2^n - k, {k, 0, 2*r - 1}]5^r/(2*r)!, {r, 0, 2^(n - 1)}], {n, 0, 8}]
Table[2^(2^n - 1)*LucasL[2^n], {n, 0, 8}] (* Vaclav Kotesovec, Jan 08 2021 *)
PROG
(Sage) [2^(2^n -1)*lucas_number2(2^n, 1, -1) for n in (0..8)] # G. C. Greubel, Jan 14 2022
(Magma) [2^(2^n -1)*Lucas(2^n): n in [0..8]]; // G. C. Greubel, Jan 14 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), May 22 2003
STATUS
approved