login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*A002532(n).
3

%I #21 Oct 29 2022 04:49:23

%S 0,2,4,18,56,202,684,2378,8176,28242,97364,335938,1158696,3997082,

%T 13787644,47560698,164059616,565922722,1952143524,6733900658,

%U 23228518936,80126541162,276395677004,953424059818,3288826504656

%N a(n) = 2*A002532(n).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,5).

%F G.f.: 2*x / (1 - 2*x - 5*x^2).

%F a(n) = 2*a(n-1) + 5*a(n-2), a(0)=0, a(1)=2.

%F a(n) = 1 / sqrt(6) * ( (1+sqrt(6))^n - (1-sqrt(6))^n ).

%F a(n) = 2 * A002533(n-1) + a(n-1).

%t CoefficientList[Series[2x/(1-2x-5x^2), {x, 0, 25}], x]

%t LinearRecurrence[{2,5},{0,2},40] (* _Harvey P. Dale_, Nov 03 2011 *)

%t With[{c=Sqrt[6]}, Simplify/@ Table[((1-c)^n+c (1-c)^n-(1+c)^n+c (1+c)^n)/(5c),{n,30}]] (* _Harvey P. Dale_, Nov 03 2011 *)

%K easy,nonn

%O 0,2

%A Mario Catalani (mario.catalani(AT)unito.it), May 03 2003