login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = (7 - 4*(-2)^n)/3.
2

%I #26 Aug 24 2024 05:54:18

%S 1,5,-3,13,-19,45,-83,173,-339,685,-1363,2733,-5459,10925,-21843,

%T 43693,-87379,174765,-349523,699053,-1398099,2796205,-5592403,

%U 11184813,-22369619,44739245,-89478483,178956973,-357913939,715827885,-1431655763,2863311533,-5726623059

%N a(n) = (7 - 4*(-2)^n)/3.

%C Also generalized k-bonacci sequence a(n)=2*a(n-2)-a(n-1). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2).

%F G.f.: (1+6*x)/((1-x)*(1+2*x)).

%F E.g.f.: (7*exp(x)-4*exp(-2*x))/3.

%t (7-4(-2)^Range[0,40])/3 (* or *) LinearRecurrence[{-1,2},{1,5},40] (* _Harvey P. Dale_, Feb 25 2012 *)

%Y Cf. A083595.

%K easy,sign

%O 0,2

%A _Paul Barry_, May 02 2003