login
Product of prime(n+1)-1 and prime(n)-1.
5

%I #12 Apr 09 2021 03:50:40

%S 2,8,24,60,120,192,288,396,616,840,1080,1440,1680,1932,2392,3016,3480,

%T 3960,4620,5040,5616,6396,7216,8448,9600,10200,10812,11448,12096,

%U 14112,16380,17680,18768,20424,22200,23400,25272,26892,28552,30616,32040

%N Product of prime(n+1)-1 and prime(n)-1.

%C The conductor of x*prime(n) + y*prime(n+1); that is, for all k >= a(n), there exist nonnegative integers x and y such that k = x*prime(n) + y*prime(n+1). - _T. D. Noe_, Sep 22 2004

%D David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 46.

%H Amiram Eldar, <a href="/A083553/b083553.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A006093(n+1)*A006093(n) = [prime(n+1)-1]*[prime(n)-1].

%F a(n) = A037165(n) + 1.

%e n=25: a(25) = (97-1)*(101-1) = 9600.

%t f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]

%Y Cf. A006093, A037165, A083538-A083555, A058263.

%K nonn

%O 1,1

%A _Labos Elemer_, May 22 2003