login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083542
a(n) = phi(n+1)*phi(n), product of totients of two consecutive integers.
8
1, 2, 4, 8, 8, 12, 24, 24, 24, 40, 40, 48, 72, 48, 64, 128, 96, 108, 144, 96, 120, 220, 176, 160, 240, 216, 216, 336, 224, 240, 480, 320, 320, 384, 288, 432, 648, 432, 384, 640, 480, 504, 840, 480, 528, 1012, 736, 672, 840, 640, 768, 1248, 936, 720, 960, 864, 1008
OFFSET
1,2
LINKS
FORMULA
a(n) = A000010(A002378(n)). - Amiram Eldar, Jul 10 2024
Sum_{k=1..n} a(k) = c * n^3 / 3 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024
MAPLE
a:= n-> (p-> p(n)*p(n+1))(numtheory[phi]):
seq(a(n), n=1..60); # Alois P. Heinz, Jan 21 2022
MATHEMATICA
Times @@ EulerPhi@ # & /@ Partition[Range@ 58, 2, 1] (* Michael De Vlieger, Mar 25 2017 *)
Times@@@Partition[EulerPhi[Range[60]], 2, 1] (* Harvey P. Dale, Oct 29 2019 *)
PROG
(Haskell)
a083542 n = a000010 n * a000010 (n + 1)
a083542_list = zipWith (*) (tail a000010_list) a000010_list
-- Reinhard Zumkeller, Apr 22 2012
(PARI) a(n) = eulerphi(n) * eulerphi(n+1); \\ Amiram Eldar, Jul 10 2024
CROSSREFS
Cf. A000010, A002378, A058515, A065474, A066813, A330319 (partial sums).
Sequence in context: A123263 A008218 A073043 * A181533 A263981 A362936
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, May 21 2003
STATUS
approved