login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^n mod 2*n.
6

%I #38 Sep 08 2022 08:45:10

%S 1,1,5,1,5,1,5,1,17,5,5,1,5,25,5,1,5,1,5,25,41,25,5,1,25,25,53,9,5,25,

%T 5,1,59,25,45,1,5,25,47,65,5,1,5,9,35,25,5,1,19,25,23,1,5,1,45,81,11,

%U 25,5,25,5,25,125,1,5,49,5,81,125,65,5,1,5,25,125,17,3,25,5,65,161,25,5,1,65

%N a(n) = 5^n mod 2*n.

%C a(n) = 1 iff n is in A067946. - _Robert Israel_, Dec 26 2014

%H Vincenzo Librandi, <a href="/A083528/b083528.txt">Table of n, a(n) for n = 1..1000</a>

%e a(3) = 5 because 5^3 = 125 and 125 == 5 mod (2 * 3).

%e a(4) = 1 because 5^4 = 625 and 625 == 1 mod (2 * 4).

%p seq(5 &^n mod (2*n), n = 1 .. 100); # _Robert Israel_, Dec 26 2014

%t Table[PowerMod[5, w, 2w], {w, 1, 100}]

%o (PARI) vector(100, n, lift(Mod(5, 2*n)^n)) \\ _Michel Marcus_, Dec 29 2014

%o (Magma) [Modexp(5, n, 2*n): n in [1..80]]; // _Vincenzo Librandi_, Oct 19 2018

%Y Cf. A000079, A000244, A000351, A000420, A082511.

%Y Cf. A067946, A083529, A083530.

%K easy,nonn

%O 1,3

%A _Labos Elemer_, Apr 30 2003