Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 18 2020 15:46:37
%S 0,1,2,1,0,5,2,3,3,2,2,3,4,1,8,5,4,2,2,3,3,2,2,7,2,9,5,2,12,9,7,5,4,2,
%T 2,3,4,1,8,5,4,2,2,3,3,2,2,15,8,5,1,43,20,13,10,3,14,7,3,11,8,3,8,5,4,
%U 2,2,3,4,1,24,13,5,4,2,11,4,5,5,4,1,13,6,5,5,4,2,7,5,3,1,3,3,2,2,31,14,10,3
%N Primitive recursive function r(z, r(s, r(s, r(s, p_2)))) at (n, 0).
%D S. Wolfram, A New Kind of Science, 2001, p. 908.
%H Charles R Greathouse IV, <a href="/A083417/b083417.txt">Table of n, a(n) for n = 0..10000</a>
%H S. Wolfram, <a href="http://www.wolframscience.com/nksonline/page-907b-text">A New Kind of Science</a>, pages 907-908.
%p z := x -> 0: s := x -> (1 + op(1, x)): p := x -> subs(q = x, y -> op(q, y)): c := x -> subs(q = x, y -> eval((op(1, q))([(seq(op(i, q), i = 2..nops(q)))(y)]))): r := x -> subs(q = x, y -> eval(`if`(op(1, y) = 0, (op(1, q))([op(2, y)]), (op(2, q))([r(q)([op(1, y) - 1, op(2, y)]), op(1, y) - 1, op(2, y)])))): seq(r([z, r([s, r([s, r([s, p(2)])])])])([i, 0]), i = 0..109);
%t (Mathematica code from New Kind of Science, p. 908, added by _N. J. A. Sloane_, Feb 17 2015)
%t F = Fold[Fold[
%t 2^Ceiling[Log[2, Ceiling[(#1 + 2)/(#2 + 2)]]] (#2 + 2) -
%t 2 - #1 &, #2, Range[#1]] &, 0, Range[#]] &
%t Table[F[n], {n, 0, 500}]
%o (PARI) f(x,y)=(y+2)<<ceil(log(ceil((x+2)/(y+2)))/log(2))-2-x
%o a(n)=my(t,y);for(k=1,n,y=k;for(i=1,t,y=f(y,i));t=y);t
%o A(n)=my(v=vector(n),t,y);v[1]=1;for(k=2,n,y=k;for(i=1,t,y=f(y,i));v[k]=t=y);v \\ _Charles R Greathouse IV_, Jan 25 2012
%Y A253099 gives locations of zeros.
%K nonn
%O 0,3
%A _Alex Fink_, Jun 08 2003