Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 26 2018 07:56:07
%S 1,1,1,-1,3,0,-6,17,-17,-19,114,-215,111,609,-2084,2947,1187,-16252,
%T 38872,-32709,-87431,390618,-673709,47692,3018098,-8616766,9761812,
%U 13605710,-84546525,171930010,-77194029,-610108400,2090199824,-2940478260,-1840404119,19501756943,-46202080484
%N Integer coefficients of a power series A(x) such that A(x)^3 = A083349(x).
%C Self-convolution cube equals A083349.
%C A083349 is the minimal permutation of the positive integers having a self-convolution cube-root consisting entirely of integers.
%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%e A083349(x)^(1/3) = A(x) = 1 + x + x^2 - x^3 + 3x^4 + 0x^5 - 6x^6 + ...
%t n = 40; A = 1 + 3x; P = Table[0, 3(n+1)]; P[[1]] = 1; P[[3]] = 2; For[j = 2, j <= n, j++, For[k = 2, k <= 3(n+1), k++, If[P[[k]] == 0, t = Coefficient[(A + k x^j + x^2 O[x]^j)^(1/3), x, j]; If[Denominator[t] == 1, P[[k]] = j+1; A = A + k x^j; Break[]]]]];
%t CoefficientList[A^(1/3) + O[x]^n, x] (* _Jean-François Alcover_, Jul 26 2018, from PARI *)
%o (PARI) {a(n)=local(A=1+3*x,P=vector(3*(n+1)));P[1]=1;P[3]=2; for(j=2,n, for(k=2,3*(n+1),if(P[k]==0, t=polcoeff((A+k*x^j+x^2*O(x^j))^(1/3),j); if(denominator(t)==1,P[k]=j+1;A=A+k*x^j;break)))); return(polcoeff((A+x*O(x^n))^(1/3),n))}
%Y Cf. A083349, A106213, A106214.
%K sign
%O 0,5
%A _Paul D. Hanna_, Apr 25 2003; revised May 01 2005