login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5^n + 4^n - 3^n.
1

%I #10 Jan 05 2021 21:32:49

%S 1,6,32,162,800,3906,18992,92322,449600,2195586,10755152,52845282,

%T 260386400,1286217666,6367168112,31576971042,156839811200,

%U 779990182146,3883029321872,19347201973602,96463456484000,481224744361026

%N a(n) = 5^n + 4^n - 3^n.

%C Binomial transform of A083319.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-47,60).

%F a(n) = 5^n + 4^n - 3^n.

%F G.f.: (1-6x+7x^2)/((1-3x)(1-4x)(1-5x)).

%F E.g.f.: exp(5x) + exp(4x) - exp(3x).

%t Table[5^n+4^n-3^n,{n,0,30}] (* or *) LinearRecurrence[{12,-47,60},{1,6,32},30] (* _Harvey P. Dale_, Aug 19 2020 *)

%K easy,nonn

%O 0,2

%A _Paul Barry_, Apr 25 2003