login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

For n >= 3, a(n-3) + a(n-2) + a(n-1) + a(n) = prime(n); a(0) = 0, a(1) = 1, a(2) = 1.
2

%I #17 Aug 21 2024 05:40:41

%S 0,1,1,3,2,5,3,7,4,9,9,9,10,13,11,13,16,19,13,19,20,21,19,23,26,29,23,

%T 25,30,31,27,39,34,37,29,49,36,43,35,53,42,49,37,63,44,53,39,75,56,57,

%U 41,79,62,59,51,85,68,65,53,91,72,67,63,105,76,69,67,119

%N For n >= 3, a(n-3) + a(n-2) + a(n-1) + a(n) = prime(n); a(0) = 0, a(1) = 1, a(2) = 1.

%H Robert Israel, <a href="/A083242/b083242.txt">Table of n, a(n) for n = 0..10000</a>

%H Robert Israel, <a href="/A083242/a083242.png">Plot of a(n) - prime(n)/4</a> for n = 1 .. 200000. n == 0, 1, 2, 3 (mod 4) in red, orange, green, blue respectively.

%F From _Robert Israel_, Aug 20 2024: (Start)

%F a(4*k) = Sum_{j=1..k} A001223(4*j-1).

%F a(4*k + 1) = 1 + Sum_{j=1..k} A001223(4*j).

%F a(4*k + 2) = Sum_{j=0..k} A001223(4*j+1).

%F a(4*k + 3) = 1 + Sum_{j=0..k} A001223(4*j+2). (End)

%e a(43) + a(44) + a(45) + a(46) = 63 + 44 + 53 + 39 = 199 = p[46]

%p f:= proc(n) option remember; ithprime(n) - procname(n-1) - procname(n-2)-procname(n-3) end proc:

%p f(0):= 0: f(1):= 1: f(2):= 1:

%p map(f, [$0..100]); # _Robert Israel_, Aug 20 2024

%t f[x_] := Prime[x]-f[x-1]-f[x-2]-f[x-3] {f[0]=0, f[1]=1, f[2]=1}; Table[f[w], {w, 0, 20}]

%Y Cf. A001223, A034467, A073737, A014687, A083240.

%K nonn,look

%O 0,4

%A _Labos Elemer_, Apr 24 2003