login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083217
a(n) = (2*5^n + (-1)^n)/3.
2
1, 3, 17, 83, 417, 2083, 10417, 52083, 260417, 1302083, 6510417, 32552083, 162760417, 813802083, 4069010417, 20345052083, 101725260417, 508626302083, 2543131510417, 12715657552083, 63578287760417, 317891438802083
OFFSET
0,2
COMMENTS
Binomial transform of A003683 (without leading zero). Inverse binomial transform of A067411.
a(n) is the number of compositions of n when there are 3 types of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010
FORMULA
a(n) = (2*5^n + (-1)^n)/3.
G.f.: (1-x)/((1-5*x)*(1+x)).
E.g.f.: (2*exp(5*x) + exp(-x))/3
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*J(n-j+1) where J(n) = A001045(n). - Paul Barry, May 19 2006
a(0)=1, a(n) = 5*a(n-1) - 2 if n is odd, and a(n) = 5*a(n) + 2 if n is even. - Vincenzo Librandi, Nov 18 2010
MATHEMATICA
LinearRecurrence[{4, 5}, {1, 3}, 30] (* Harvey P. Dale, Sep 18 2018 *)
PROG
(Sage)
from sage.combinat.sloane_functions import recur_gen2b
it = recur_gen2b(1, 3, 4, 5, lambda n: 0)
[next(it) for i in range(1, 24)] # Zerinvary Lajos, Jul 03 2008
(Magma) [(2*5^n +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Feb 17 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2003
STATUS
approved