Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Jan 12 2025 14:30:48
%S 1,2,14,48,236,952,4264,18048,78736,337952,1463264,6306048,27244736,
%T 117549952,507547264,2190594048,9456660736,40819261952,176205131264,
%U 760602882048,3283257076736,14172542973952,61177656715264,264080743170048,1139938053492736,4920683538685952
%N a(n) = 2*a(n-1) + 10*a(n-2), with a(0) = 1, a(1) = 2.
%C a(n+1) = a(n) + A083101(n). A083101(n)/a(n) converges to sqrt(11).
%C Antidiagonals of A038207. - _Mark Dols_, Aug 31 2009
%C Numerators of stationary probabilities for M2/M/1 queue system. In this queue, customers arrive in groups of 2. Intensity of arrival = 2. Service rate = 5. There is only one server and an infinite queue. - _Igor Kleiner_, Nov 02 2018
%H G. C. Greubel, <a href="/A083102/b083102.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi)
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,10).
%F G.f.: 1/(1-2*x-10*x^2).
%F From _Paul Barry_, Sep 29 2004: (Start)
%F E.g.f.: exp(x) * sinh(sqrt(11)*x) / sqrt(11).
%F a(n) = Sum_{k=0..n} binomial(n,2*k+1) * 11^k. (End)
%F a(n) = ((1+sqrt(11))^n - (1-sqrt(11))^n)/(2*sqrt(11)). - _Rolf Pleisch_, Jul 06 2009
%F G.f.: G(0)/(2-2*x), where G(k)= 1 + 1/(1 - x*(11*k-1)/( x*(11*k+10) - 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 14 2013
%F G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + 10*x )/( x*(4*k+4 + 10*x ) + 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 21 2013
%t CoefficientList[Series[1/(1-2x-10x^2), {x, 0, 25}], x]
%t LinearRecurrence[{2,10}, {1,2}, 30] (* _G. C. Greubel_, Jan 08 2018 *)
%o (Sage) [lucas_number1(n,2,-10) for n in range(1, 24)] # _Zerinvary Lajos_, Apr 22 2009
%o (PARI) x='x+O('x^30); Vec(1/(1-2*x-10*x^2)) \\ _G. C. Greubel_, Jan 08 2018
%o (Magma) I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1) + 10*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 08 2018
%Y Cf. A038207, A083101.
%K easy,nonn,changed
%O 0,2
%A Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003