login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A083065
4th row of number array A083064.
11
1, 4, 19, 94, 469, 2344, 11719, 58594, 292969, 1464844, 7324219, 36621094, 183105469, 915527344, 4577636719, 22888183594, 114440917969, 572204589844, 2861022949219, 14305114746094, 71525573730469, 357627868652344
OFFSET
0,2
COMMENTS
Inverse binomial transform of A090040. [Paul Curtz, Jan 11 2009]
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). [Milan Janjic, Feb 21 2010]
For an integer x, consider the sequence P(x) of polynomials p_{1}, p_{2}, p_{3}, . . . defined by p_{1} = x-1, p_{n+1} = x*p_{1} - 1. P(5) = This sequence. P(1), P(2), P(3), P(4) are A000004, A123412, A007051, A007583 resp. [K.V.Iyer, Jun 22 2010]
It appears that if s(n) is a first order rational sequence of the form s(0)=2, s(n)= (3*s(n-1)+2)/(2*s(n-1)+3), n>0, then s(n)=2*a(n)/(2*a(n)-1), n>0.
An Engel expansion of 5/3 to the base b := 5/4 as defined in A181565, with the associated series expansion 5/3 = b + b^2/4 + b^3/(4*19) + b^4/(4*19*94) + .... Cf. A007051. - Peter Bala, Oct 29 2013
FORMULA
a(n) = (3*5^n+1)/4.
G.f.: (1-2*x)/((1-5*x)(1-x)).
E.g.f.: (3*exp(5*x) + exp(x))/4.
a(n) = 5*a(n-1)-1 with n>0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 6*a(n-1)-5*a(n-2). - Vincenzo Librandi, Nov 04 2011
a(n) = 5^n - Sum_{i=0..n-1} 5^i. - Bruno Berselli, Jun 20 2013
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]*5-1 od: seq(a[n], n=1..22); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
CoefficientList[Series[(1-2x)/((1-5x)(1-x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -5}, {1, 4}, 30] (* Harvey P. Dale, Jul 27 2022 *)
PROG
(Magma) [(3*5^n+1)/4: n in [0..30]]; // Vincenzo Librandi, Nov 04 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 21 2003
STATUS
approved