login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of symmetric sum-free subsets of {1,2,...,n-1} with sums taken mod n.
1

%I #12 Jan 12 2020 12:46:06

%S 1,2,1,3,3,4,4,8,4,14,11,14,16,31,19,45,37,56,55,106,55,164,122,179,

%T 190,353,178,467,379,648,541,1022,601,1572,1171,1645,1594,3238,1708,

%U 4523,3220,5495,4516,8694,5103,13259,8948,14471,12145,27156,13441,33752,24155

%N Number of symmetric sum-free subsets of {1,2,...,n-1} with sums taken mod n.

%C Parker vector for K_3-free graphs.

%D P. J. Cameron, Portrait of a typical sum-free set, Surveys in combinatorics 1987, London Math. Soc. Lecture Note Ser., 123, 1987, pp. 13-42.

%H Andrew Howroyd, <a href="/A083041/b083041.txt">Table of n, a(n) for n = 1..100</a>

%H D. A. Gewurz and F. Merola, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Gewurz/gewurz5.html">Sequences realized as Parker vectors of oligomorphic permutation groups</a>, J. Integer Seq., 6 (2003), 03.1.6

%e a(3) = 1, as {} is the only symmetric sum-free set ({1} is not symmetric, while {1,2} is not sum-free). a(4)=3; its symmetric sum-free subsets are {}, {1,3}, {2}.

%o (PARI)

%o a(n)={

%o my(accept(b, k)=for(i=1, k, if(bittest(b, i), if(bittest(b, min(k+i, n-k-i)) || bittest(b, k-i), return(0)))); 1);

%o my(recurse(k, b)=if(2*k > n, 1, self()(k+1, b) + if(accept(b + (1<<k), k), self()(k+1, b + (1<<k)))));

%o recurse(1, 0);

%o } \\ _Andrew Howroyd_, Jan 12 2020

%Y Cf. A007865.

%K nonn

%O 1,2

%A Daniele A. Gewurz (gewurz(AT)mat.uniroma1.it), Francesca Merola (merola(AT)mat.uniroma1.it), May 06 2003

%E Terms a(32) and beyond from _Andrew Howroyd_, Jan 12 2020