login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A083021
a(n) = the number of distinct primes of the form p(n)#/p(i) + p(i).
1
1, 1, 3, 4, 3, 4, 3, 2, 2, 5, 2, 4, 2, 2, 6, 2, 3, 4, 4, 3, 5, 1, 3, 3, 3, 2, 3, 3, 6, 2, 1, 0, 0, 1, 2, 6, 2, 3, 1, 7, 3, 1, 1, 2, 0, 1, 4, 4, 2, 4, 4, 0, 3, 3, 4, 1, 2, 4, 2, 2, 1, 2, 2, 2, 1, 3, 2, 1, 4, 3, 2, 3, 2, 3, 3, 4, 5, 2, 2, 5, 4, 2, 2, 1, 2, 2, 1, 5, 0, 2, 1, 2, 4, 2, 4, 4, 1, 5, 1, 1, 1, 3, 2, 1, 1
OFFSET
1,3
COMMENTS
Some of the larger entries may only correspond to probable primes.
EXAMPLE
p(n) is the n-th prime; # denotes primorial (A002110).
a(2)=1 because 3#/2+2 and 3#/3+3 are the same prime (5).
a(4)=4 because 7#/2+2=107, 7#/3+3=73, 7#/5+5=47, 7#/7+7=37 are four primes.
PROG
(PARI) p_n_primorial(n) = { prod(i=1, n, prime(i)) }
a(n) = { my(p=p_n_primorial(n), c=0); if(n==2, 1, for(i=1, n, my(q=p/prime(i)+prime(i)); if(isprime(q), c++)); c) }
CROSSREFS
Cf. A002110.
Sequence in context: A270827 A293072 A120447 * A102745 A108026 A010702
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, May 31 2003
EXTENSIONS
Edited by Don Reble, Nov 16 2005
STATUS
approved