login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082975
Denominators of continued fraction convergents to (sqrt(37)-4)/3.
2
1, 1, 3, 10, 13, 36, 121, 157, 435, 1462, 1897, 5256, 17665, 22921, 63507, 213442, 276949, 767340, 2578969, 3346309, 9271587, 31161070, 40432657, 112026384, 376511809, 488538193, 1353588195, 4549302778, 5902890973, 16355084724
OFFSET
0,3
FORMULA
Empirical g.f.: 1 + x*(1+3*x+10*x^2+x^3+x^5)/(1-12*x^3-x^6). - Colin Barker, Jan 04 2012
From Michael Somos, Dec 07 2017: (Start)
G.f.: (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6).
Let s := sqrt(37), c := 6 + s, b(0) = 1/2 + 2/s, b(1) = 1/2 + 7/2/s, b(2) := 3/2 + 9/s, then a(3*n + k) ~ b(k) * c^n for k=0, 1, 2.
0 = a(n)*(+3*a(n+1) +5*a(n+2) -3*a(n+3)) +a(n+1)*(+7*a(n+1) +10*a(n+2) -7*a(n+3)) +a(n+2)*(-5*a(n+2) +3*a(n+3)) for all n in Z.
a(n+3) = 12*a(n) + a(n-3), a(n+1) = a(n-1) + (1+mod(n, 3))*a(n) for all n in Z.
a(3*n - 1) = -(-1)^n * a(-3*n - 1) = 3 * A041061(n-1) for all n in Z. (End)
MATHEMATICA
Denominator[Convergents [(Sqrt[37]-4)/3, 40]] (* Vincenzo Librandi, Feb 01 2014 *)
a[ n_] := If[ n < -1, SeriesCoefficient[ (1 - 2*x + 3*x^2 + x^3 + x^4) / (1 + 12*x^3 - x^6), {x, 0, -2 - n}], SeriesCoefficient[ (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6), {x, 0, n}]]; (* Michael Somos, Dec 07 2017 *)
PROG
(PARI) {a(n) = if( n<-1, n = -2-n; polcoeff( (1 - 2*x + 3*x^2 + x^3 + x^4) / (1 + 12*x^3 - x^6) + x * O(x^n), n), polcoeff( (1 + x + 3*x^2 - 2*x^3 + x^4) / (1 - 12*x^3 - x^6) + x * O(x^n), n))}; /* Michael Somos, Dec 07 2017 */
CROSSREFS
Numerators are A082962.
Cf. A041061.
Sequence in context: A068361 A285181 A042331 * A275432 A041985 A081519
KEYWORD
nonn,frac,easy
AUTHOR
Gary W. Adamson, May 27 2003
EXTENSIONS
Edited by Don Reble, Nov 04 2005
Prepended a(0)=1 from Vincenzo Librandi, Feb 01 2014
STATUS
approved