login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082940
Palindromes in A082939.
3
1, 2, 22, 141, 171, 202, 333, 2002, 2772, 7227, 10401, 10701, 12221, 13131, 14841, 15651, 16461, 17271, 20002, 21212, 25452, 26262, 27072, 30303, 31113, 33633, 35253, 41814, 51615, 52425, 53235, 55755, 58185, 61416, 62226, 66366, 69696, 71217, 72027, 85158, 96669, 117711
OFFSET
1,2
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..670 from J.W.L. (Jan) Eerland)
EXAMPLE
22 = 2!*2! = 4 and 2 + 2 = 4.
141 = 1!*4!*1! = 24; 2 + 4 = 6 and 1 + 4 + 1 = 6.
MATHEMATICA
DeleteCases[ParallelTable[If[PalindromeQ[n]&&Total@IntegerDigits[Times@@Map[Factorial, IntegerDigits[n]]]==Total@IntegerDigits[n], n, a], {n, 0, 10^8}], a] (* J.W.L. (Jan) Eerland, Dec 26 2021 *)
PROG
(Python)
from math import factorial, prod
from itertools import count, islice, product
def isA082939(n):
d = list(map(int, str(n)))
return sum(map(int, str(prod(map(factorial, d))))) == sum(d)
def pals(): # generator of terms
digits = "0123456789"
for d in count(1):
for p in product(digits, repeat=d//2):
if d > 1 and p[0] == "0": continue
left = "".join(p); right = left[::-1]
for mid in [[""], digits][d%2]:
yield int(left + mid + right)
def agen(): yield from filter(isA082939, pals())
print(list(islice(agen(), 42))) # Michael S. Branicky, Aug 15 2022
CROSSREFS
Intersection of A002113 and A082939.
Sequence in context: A084399 A067057 A202738 * A286778 A232977 A282819
KEYWORD
nonn,base
AUTHOR
Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 27 2003, following a suggestion by Amarnath Murthy.
EXTENSIONS
Corrected and extended by J.W.L. (Jan) Eerland, Dec 26 2021
STATUS
approved