login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Highest power of two that divides the sum of divisors of n.
7

%I #51 Jul 02 2022 13:15:10

%S 1,1,4,1,2,4,8,1,1,2,4,4,2,8,8,1,2,1,4,2,32,4,8,4,1,2,8,8,2,8,32,1,16,

%T 2,16,1,2,4,8,2,2,32,4,4,2,8,16,4,1,1,8,2,2,8,8,8,16,2,4,8,2,32,8,1,4,

%U 16,4,2,32,16,8,1,2,2,4,4,32,8,16,2,1,2,4,32,4,4,8,4,2,2,16,8,128,16,8,4,2

%N Highest power of two that divides the sum of divisors of n.

%C a(n) = gcd(2^n, sigma_1(n)) = gcd(A000079(n), A000203(n)) also a(n) = gcd(2^n, sigma_3(n)) = gcd(A000079(n), A001158(n)). (The original, equivalent definition for this sequence).

%C a(n) = gcd(2^n, sigma_k(n)) when k is an odd positive integer. Proof: It suffices to show that v_2(sigma_k(n)) does not depend on k, where v_2(n) is the 2-adic valuation of n. Since v_2(ab) = v_2(a)+v_2(b) and sigma_k(n) is an arithmetic function, we need only prove it for n=p^e with p prime. If p is 2 or e is even, sigma_k(p^e) is odd, so we can disregard those cases. Otherwise, we sum the geometric series to obtain v_2(sigma_k(p^e)) = v_2(p^(k(e+1))-1)-v_2(p-1). Applying the well-known LTE Lemma (see Hossein link) Case 4 arrives at v_2(p^(k(e+1))-1)-v_2(p-1) = v_2(p+1)+v_2(k(e+1))-1. But v_2(k(e+1)) = v_2(k)+v_2(e+1), and k is odd, so we conclude that v_2(sigma_k(p^e)) = v_2(p+1)+v_2(e+1)-1, a result independent of k. - _Rafay A. Ashary_, Oct 15 2016

%C Also the highest power of two that divides the sum of odd divisors of n. - _Antti Karttunen_, Mar 27 2022

%H Robert Israel, <a href="/A082903/b082903.txt">Table of n, a(n) for n = 1..10000</a>

%H Amir Hossein, <a href="http://www.artofproblemsolving.com/community/c6h393335">Lifting The Exponent Lemma (Containing PDF file)</a>

%H Jon Maiga, <a href="http://sequencedb.net/s/A082903">Computer-generated formulas for A082903</a>, Sequence Machine.

%F From _Antti Karttunen_, Mar 27 2022: (Start)

%F (Some of these formulas were found by Sequence Machine.)

%F a(n) = a(A000265(n)) = a(2*n).

%F a(n) = A006519(A000593(n)) = A006519(A000203(n)) = A000203(n) / A161942(n).

%F a(n) = 2^(A286357(n)-1).

%F (End)

%F a(n) = 2^A336937(n). - _Chai Wah Wu_, Jul 02 2022

%p seq(2^min(n, padic:-ordp(numtheory:-sigma(n),2)), n=1..100); # _Robert Israel_, Oct 23 2016

%t Array[2^IntegerExponent[DivisorSigma[1, #], 2] &, 97] (* _Michael De Vlieger_, Apr 03 2022 *)

%o (PARI) a(n) = gcd(2^n, sigma(n)); \\ _Michel Marcus_, Oct 15 2016

%o (PARI) A082903(n) = (2^valuation(sigma(n), 2)); \\ _Antti Karttunen_, Mar 27 2022

%o (Python)

%o from sympy import divisor_sigma

%o def A082903(n): return 1<<(~(m:=int(divisor_sigma(n))) & m-1).bit_length() # _Chai Wah Wu_, Jul 02 2022

%Y Cf. A000203, A000265, A000593, A001157, A001158, A006519, A007814, A082902, A161942, A286357.

%Y Cf. A028982 (positions of 1's).

%K nonn,mult

%O 1,3

%A _Labos Elemer_, Apr 22 2003

%E Name replaced with a simpler one and the original definition moved to the Comments section by _Antti Karttunen_, Apr 03 2022