login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082864
Decimal expansion of (-1)*c(2) where, in a neighborhood of zero, Gamma(x) = 1/x + c(0) + c(1)*x + c(2)*x^2 + ... (Gamma(x) denotes the Gamma function).
1
2, 4, 2, 3, 4, 5, 4, 5, 2, 2, 2, 7, 3, 6, 0, 9, 4, 9, 7, 6, 2, 2, 9, 3, 6, 2, 8, 4, 6, 0, 6, 7, 1, 4, 8, 3, 8, 3, 8, 8, 9, 2, 2, 1, 5, 7, 9, 1, 1, 8, 9, 2, 4, 0, 4, 8, 7, 4, 4, 4, 4, 0, 5, 5, 3, 3, 1, 5, 3, 1, 3, 1, 1, 7, 3, 6, 9, 4, 8, 3, 6, 9, 1, 1, 5, 1, 7, 0, 1, 3, 5, 6, 3, 0, 1, 0, 2, 5, 6, 2, 5, 7, 8, 9
OFFSET
0,1
REFERENCES
S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135.
LINKS
FORMULA
c(2) = (EulerGamma^3 - 3*EulerGamma*zeta(2) + zeta(3))/6 = -0.24234545222... ( where EulerGamma is the Euler-Mascheroni constant (A001620)).
EXAMPLE
0.2423454522273609497622936284606714838388922157911892404874444...
MATHEMATICA
RealDigits[-(EulerGamma^3 - 3*EulerGamma*Zeta[2] + Zeta[3])/6, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
PROG
(PARI) -(Euler^3-3*Euler*zeta(2)+zeta(3))/6
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); R:= RealField(); -(EulerGamma(R)^3 - 3*EulerGamma(R)*Evaluate(L, 2) + Evaluate(L, 3))/6; // G. C. Greubel, Sep 05 2018
CROSSREFS
Cf. A013661 (zeta(2)), A002117 (zeta(3)), A001620 (Euler-Mascheroni constant).
Sequence in context: A330312 A331810 A182817 * A134447 A093056 A271320
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, May 24 2003
STATUS
approved