login
A082864
Decimal expansion of (-1)*c(2) where, in a neighborhood of zero, Gamma(x) = 1/x + c(0) + c(1)*x + c(2)*x^2 + ... (Gamma(x) denotes the Gamma function).
1
2, 4, 2, 3, 4, 5, 4, 5, 2, 2, 2, 7, 3, 6, 0, 9, 4, 9, 7, 6, 2, 2, 9, 3, 6, 2, 8, 4, 6, 0, 6, 7, 1, 4, 8, 3, 8, 3, 8, 8, 9, 2, 2, 1, 5, 7, 9, 1, 1, 8, 9, 2, 4, 0, 4, 8, 7, 4, 4, 4, 4, 0, 5, 5, 3, 3, 1, 5, 3, 1, 3, 1, 1, 7, 3, 6, 9, 4, 8, 3, 6, 9, 1, 1, 5, 1, 7, 0, 1, 3, 5, 6, 3, 0, 1, 0, 2, 5, 6, 2, 5, 7, 8, 9
OFFSET
0,1
REFERENCES
S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135.
LINKS
FORMULA
c(2) = (EulerGamma^3 - 3*EulerGamma*zeta(2) + zeta(3))/6 = -0.24234545222... ( where EulerGamma is the Euler-Mascheroni constant (A001620)).
EXAMPLE
0.2423454522273609497622936284606714838388922157911892404874444...
MATHEMATICA
RealDigits[-(EulerGamma^3 - 3*EulerGamma*Zeta[2] + Zeta[3])/6, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
PROG
(PARI) -(Euler^3-3*Euler*zeta(2)+zeta(3))/6
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); R:= RealField(); -(EulerGamma(R)^3 - 3*EulerGamma(R)*Evaluate(L, 2) + Evaluate(L, 3))/6; // G. C. Greubel, Sep 05 2018
CROSSREFS
Cf. A013661 (zeta(2)), A002117 (zeta(3)), A001620 (Euler-Mascheroni constant).
Sequence in context: A330312 A331810 A182817 * A134447 A093056 A271320
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, May 24 2003
STATUS
approved