OFFSET
0,1
REFERENCES
S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
c(2) = (EulerGamma^3 - 3*EulerGamma*zeta(2) + zeta(3))/6 = -0.24234545222... ( where EulerGamma is the Euler-Mascheroni constant (A001620)).
EXAMPLE
0.2423454522273609497622936284606714838388922157911892404874444...
MATHEMATICA
RealDigits[-(EulerGamma^3 - 3*EulerGamma*Zeta[2] + Zeta[3])/6, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
PROG
(PARI) -(Euler^3-3*Euler*zeta(2)+zeta(3))/6
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); R:= RealField(); -(EulerGamma(R)^3 - 3*EulerGamma(R)*Evaluate(L, 2) + Evaluate(L, 3))/6; // G. C. Greubel, Sep 05 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, May 24 2003
STATUS
approved