Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 09 2021 04:06:43
%S 0,1,2,2,4,4,4,12,18,6,8,8,8,56,56,8,12,12,12,108,108,12,16,80,70,126,
%T 144,16,22,22,16,208,234,198,264,24,20,300,360,24,30,30,24,504,504,24,
%U 32,224,210,570,532,28,36,540,480,672,630,30,44,44,32,864,864,544,782
%N Product of cototient values of consecutive integers.
%H Harvey P. Dale, <a href="/A082849/b082849.txt">Table of n, a(n) for n = 1..1000</a>
%H Laurenţiu Panaitopol, <a href="https://www.jstor.org/stable/43678722">Asymptotical formula for a(n) = n - e(n)</a>, Bull. Math. Soc. Sci. Math. Roumanie, Vol. 42 (90), No. 3 (1999), pp. 271-277.
%F a(n) = A051953(n) * A051953(n+1).
%F Sum_{k=1..n} a(k) ~ c * n^3 + O(n^2 * log(n)^2), where c = (1/3) * (1 + Product_{p prime} (1 - 2/p^2)) - 4/Pi^2 = 0.03559329841.... (Panaitopol, 1999). - _Amiram Eldar_, Mar 09 2021
%t f[x_] := x-EulerPhi[x] tpr=Table[f[w+1]*f[w], {w, 1, 128}]
%t Times@@@Partition[Table[n-EulerPhi[n],{n,70}],2,1] (* _Harvey P. Dale_, Nov 17 2020 *)
%o (PARI) p=2;forprime(q=3,97,print1((p-eulerphi(p))*(q-eulerphi(q))", ");p=q) \\ _Charles R Greathouse IV_, Nov 16 2012
%Y Cf. A051953, A065474, A083538-A083555.
%K nonn
%O 1,3
%A _Labos Elemer_, May 22 2003