Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Feb 14 2024 17:27:38
%S 3,2,3,2,2,3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,
%T 3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,2,
%U 3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,3,2,2,3,2,3,2,2,3
%N Start with 3,2 and apply the rule a(a(1)+a(2)+...+a(n)) = a(n), fill in any undefined terms with a(t) = 2 if a(t-1) = 3 and a(t) = 3 if a(t-1) = 2.
%C a(1)=3, a(2)=2, a(a(1)+a(2)+...+a(n)) = a(n) and a(a(1)+a(2)+...+a(n)+1) = 5-a(n).
%C More generally, sequence a(n) = floor(r*(n+2))-floor(r*(n+1)), r = (1/2) *(z+sqrt(z^2+4)), z integer >=1, is defined with a(1), a(2) and a(a(1)+a(2)+...+a(n)+f(z)) = a(n); a(a(1)+a(2)+...+a(n)+f(z)+1) = (2z+1)-a(n) where f(1)=0, f(z)=z-2 for z>=2.
%C Conjecture: a(n) = A097509(n+1). - _Benedict W. J. Irwin_, Mar 13 2016. [See the discussion in A097509. - _N. J. A. Sloane_, Mar 09 2021]
%C Theorem: Referring to the solution to Problem B6 in the 81st William Lowell Putnam Mathematical Competition (see link), in the notation of the first solution, the sequence a(n) = c_{n+1} indexed from 1 equals the present sequence, A082844. - Manjul Bhargava, Kiran Kedlaya, and Lenny Ng, Sep 09 2021.
%H Manjul Bhargava, Kiran Kedlaya, and Lenny Ng, <a href="https://kskedlaya.org/putnam-archive/2020s.pdf">Solutions to the 81st William Lowell Putnam Mathematical Competition</a>
%H Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, <a href="https://arxiv.org/abs/2402.08331">Beatty Sequences for a Quadratic Irrational: Decidability and Applications</a>, arXiv:2402.08331 [math.NT], 2024. See pp. 17-19.
%H N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence)
%F a(n) = floor(r*(n+2))-floor(r*(n+1)) where r=1+sqrt(2).
%p A082844:=n->floor((1+sqrt(2))*(n+2))-floor((1+sqrt(2))*(n+1)): seq(A082844(n), n=1..100); # _Wesley Ivan Hurt_, Mar 13 2016
%t With[{r=1+Sqrt[2]},Table[Floor[r*(n+2)]-Floor[r*(n+1)],{n,110}]] (* _Harvey P. Dale_, Oct 10 2012 *)
%o (Magma) [Floor((1+Sqrt(2))*(n+2))-Floor((1+Sqrt(2))*(n+1)) : n in [1..100]]; // _Wesley Ivan Hurt_, Mar 13 2016
%Y Cf. A082389, A082845, A097509.
%Y The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - _N. J. A. Sloane_, Mar 09 2021
%K nonn,easy
%O 1,1
%A _Benoit Cloitre_, Apr 15 2003; revised Jun 07 2003