login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Kempner series Sum_{k>=1, k has no digit 1 in base 10} 1/k.
16

%I #34 Jan 16 2020 20:18:34

%S 1,6,1,7,6,9,6,9,5,2,8,1,2,3,4,4,4,2,6,6,5,7,9,6,0,3,8,8,0,3,6,4,0,0,

%T 9,3,0,5,5,6,7,2,1,9,7,9,0,7,6,3,1,3,3,8,6,4,5,1,6,9,0,6,4,9,0,8,3,6,

%U 3,6,2,9,8,8,9,9,9,9,9,6,4,5,6,3,8,8,8,6,2,1,4,6,2,6,6,8,5,0,2,8,6,2,9,7,7

%N Decimal expansion of Kempner series Sum_{k>=1, k has no digit 1 in base 10} 1/k.

%C Such sums are called Kempner series, see A082839 (the analog for digit 0) for more information. - _M. F. Hasler_, Jan 13 2020

%D Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.

%H Robert Baillie, <a href="http://www.jstor.org/stable/2321096">Sums of reciprocals of integers missing a given digit</a>, Amer. Math. Monthly, 86 (1979), 372-374.

%H Robert Baillie, <a href="http://arxiv.org/abs/0806.4410">Summing the curious series of Kempner and Irwin</a>, arXiv:0806.4410 [math.CA], 2008-2015. [From _Robert G. Wilson v_, Jun 01 2009]

%H Eric Weisstein's World of Mathematics,, <a href="http://mathworld.wolfram.com/KempnerSeries.html">Kempner Series</a>. [From _R. J. Mathar_, Aug 07 2010]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Kempner_series">Kempner series</a>.

%H Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, <a href="http://library.wolfram.com/infocenter/MathSource/7166/"> Summing Kempner's Curious (Slowly-Convergent) Series</a>. [From _Robert G. Wilson v_, Jun 01 2009]

%F Equals Sum_{k in A052383\{0}} 1/k, where A052383 = numbers with no digit 1. Those which have a digit 1 (A011531) are omitted in the harmonic sum, and they have asymptotic density 1: almost all terms are omitted from the sum. - _M. F. Hasler_, Jan 15 2020

%e 16.17696952812344426657...

%t (* see the Mmca in Wolfram Library Archive. - _Robert G. Wilson v_, Jun 01 2009 *)

%Y Cf. A002387, A024101, A052383 (numbers without '1'), A011531 (numbers with '1').

%Y Cf. A082831, A082832, A082833, A082834, A082835, A082836, A082837, A082838, A082839 (analog for digits 2, ..., 9 and 0).

%K nonn,cons,base

%O 2,2

%A _Robert G. Wilson v_, Apr 14 2003

%E More terms from _Robert G. Wilson v_, Jun 01 2009