login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Trinomial transform of the factorial numbers (A000142).
3

%I #15 Mar 01 2015 15:14:03

%S 1,4,45,1282,70177,6239016,817234189,147950506390,35370826189857,

%T 10791515504716012,4091225768720823181,1886585105032464025674,

%U 1039774852573506696192385,674970732343624159361034832

%N Trinomial transform of the factorial numbers (A000142).

%C Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a sequence of n (possibly empty) lists, each of length at most 2. - Bob Proctor, Apr 18 2005

%H Robert A. Proctor, <a href="http://arxiv.org/abs/math.CO/0606404">Let's Expand Rota's Twelvefold Way For Counting Partitions!</a>, arXiv:math.CO/0606404, Jan 05, 2007

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F a(n) = Sum[ Trinomial[n, k] k!, {k, 0, 2n} ] where Trinomial[n, k] = trinomial coefficients (A027907)

%F Integral_{x=0..infinity} (x^2+x+1)^n*exp(-x) dx - _Gerald McGarvey_, Oct 14 2006

%Y a(n) = Sum[C(n, k)*A099022(k), 0<=k<=n]

%Y Replace "sequence" by "collection" in comment: A105747.

%Y Replace "lists" by "sets" in comment: A003011.

%K easy,nonn

%O 0,2

%A _Emanuele Munarini_, May 21 2003