%I #17 Nov 10 2019 01:33:09
%S 3,13,31,61,117,291,633,1065,1495,5433,7363
%N Numbers k such that (35*10^(k-1) - 53)/9 is a plateau prime.
%C Prime versus probable prime status and proofs are given in the author's table.
%D C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/deplat.htm#pdp383">PDP Reference Table - 383</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/3/38883.htm#prime">Prime numbers of the form 388...883</a>.
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F a(n) = A056256(n) + 2.
%e k=13 -> (35*10^(13-1) - 53)/9 = 3888888888883.
%Y Cf. A082697-A082720, A056256.
%K nonn,base,hard,more
%O 1,1
%A _Patrick De Geest_, Apr 13 2003
%E Edited by _Ray Chandler_, Nov 05 2014