Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 25 2017 10:04:06
%S 1,2,1,2,4,2,1,2,4,8,4,2,1,2,4,8,16,8,4,2,1,2,4,8,16,32,16,8,4,2,1,2,
%T 4,8,16,32,64,32,16,8,4,2,1,2,4,8,16,32,64,128,64,32,16,8,4,2,1,2,4,8,
%U 16,32,64,128,256,128,64,32,16,8,4,2,1,2,4,8,16,32,64,128,256,512,256,128
%N Pyramidal sequence built with powers of 2.
%e Triangle begins:
%e 1
%e 2 1 2
%e 4 2 1 2 4
%e 8 4 2 1 2 4 8
%e 16 8 4 2 1 2 4 8 16
%e 32 16 8 4 2 1 2 4 8 16 32
%e 64 32 16 8 4 2 1 2 4 8 16 32 64
%e 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128
%e 256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256
%e 512 256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256 512
%e 1024 512 256 128 64 32 16 8 4 2 1 2 4 8 16 32 64 128 256 512 1024
%e ... - _Philippe Deléham_, Mar 20 2013
%t pow2Pyram[row_] := Module[{st = 2^Range[0, row]}, Join[st, Reverse[Most[Rest[st]]]]]; Flatten[Array[pow2Pyram, 10]] (* _Harvey P. Dale_, May 09 2012 *)
%t Flatten[Table[Table[2^Abs[col], {col, -row, row}], {row, 0, 7}]] (* _Alonso del Arte_, Apr 15 2017 *)
%o (PARI) for(i=0,9,forstep(j=i,0,-1,print1(1<<j", "));for(j=1,i,print1(1<<j", "))) \\ _Charles R Greathouse IV_, Mar 20 2013
%Y Cf. A004738, A082693 (partial sums), A036563 (row sums).
%K nonn,tabf,easy
%O 1,2
%A _Benoit Cloitre_, Apr 12 2003