login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Constant term when a polynomial of degree <= n is fitted to the first n+1 upper members of the twin prime pairs.
2

%I #19 Jun 14 2024 10:06:47

%S 3,7,11,21,43,89,189,427,1043,2691,7033,18017,44505,105505,240269,

%T 527037,1116025,2283323,4509663,8574253,15613037,26989461,43596475,

%U 63714863,77517777,54160585,-87072619,-539390367,-1742001767,-4661299495

%N Constant term when a polynomial of degree <= n is fitted to the first n+1 upper members of the twin prime pairs.

%H Robert Israel, <a href="/A082675/b082675.txt">Table of n, a(n) for n = 1..1000</a>

%H Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/page.msnw?fc_p=%2FSicurv%20%2D%20Simul%20Equ%20and%20Curve%20Fitting&amp;fc_a=0">Sicurvqf.exe</a>

%e A 5th degree polynomial through the 6 points (1, 5), (2, 7), (3, 13), (4, 19), (5, 31), (6, 43) has constant term 43.

%p A006512 := proc(n) local i,p ; i := 1 ; p := 0 ; while true do while ithprime(i+1)-ithprime(i) <> 2 do i := i+1 ; od ; p := p+1 ; if p = n then RETURN( ithprime(i+1) ) ; fi ; i := i+1 ; od ; end: A082675 := proc(n) local rhs,co, row,col; rhs := linalg[vector](n+1) ; co := linalg[matrix](n+1,n+1) ; for row from 1 to n+1 do rhs[row] := A006512(row) ; for col from 1 to n+1 do co[row,col] := row^(col-1) ; od ; od ; linalg[linsolve](co,rhs)[1] ; end: for n from 1 to 30 do printf("%d,",A082675(n)) ; od ; # _R. J. Mathar_, Oct 31 2006

%Y Equals lower-member sequence (A082674) + 2.

%Y Cf. A082594.

%K easy,sign

%O 1,1

%A _Cino Hilliard_, May 19 2003

%E Corrected and extended by _R. J. Mathar_, Oct 31 2006

%E Definition edited by _Robert Israel_, Jun 14 2024