login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^k has final digits the same as all the digits of k.
10

%I #46 Jun 04 2024 07:39:59

%S 1,5,6,9,11,16,21,25,31,36,41,49,51,56,57,61,71,75,76,81,91,93,96,99,

%T 101,125,151,176,193,201,249,251,301,351,375,376,401,451,499,501,551,

%U 557,576,601,625,651,693,701,749,751,776,801,851,875,901,951,976,999

%N Numbers k such that k^k has final digits the same as all the digits of k.

%C k^k^k also has the same final digits as k. - _Ed Pegg Jr_, Jun 27 2013

%C For any positive integer r the sequence contains 10^r-1. - _Reiner Moewald_, Feb 14 2016

%C From _Robert Israel_, Mar 04 2016: (Start)

%C All terms > 96 end in 01, 25, 49, 51, 57, 75, 76, 93 or 99.

%C It appears that except for 1, 5, 6, 9, 57 and 93, if k is a term then so is the number obtained from k by deleting its first digit. (End)

%D Suggested by _Herb Conn_.

%H Charles R Greathouse IV, <a href="/A082576/b082576.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>

%F { k : k^k mod 10^(1+floor(log_10(k))) = k }. - _Jon E. Schoenfield_, Jun 02 2024

%e 9^9 = 387420489 ends in 9, so 9 is a term.

%e 11^11 = 285311670611 ends in 11, so 11 is a term.

%p a:= proc(n) option remember; local k; for k from 1+

%p a(n-1) while k&^k mod (10^length(k))<>k do od; k

%p end: a(1):=1:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jun 27 2013

%p select(n -> n&^n mod 10^(1+ilog10(n)) = n, [$1..1000]); # _Robert Israel_, Mar 04 2016

%t Select[Range@ 1000, Function[k, Take[IntegerDigits[#^#], -Length@ k] == k]@ IntegerDigits@ # &] (* _Michael De Vlieger_, Mar 04 2016 *)

%t Select[Range[1000],PowerMod[#,#,10^IntegerLength[#]]==#&] (* _Harvey P. Dale_, Dec 21 2019 *)

%o (PARI) for (d = 1, 4, for (i = 10^(d - 1), 10^d - 1, x = Mod(i, 10^d); if (x^i == x, print(i)))) \\ _David Wasserman_, Oct 27 2006

%o (PARI) is(n)=my(d=digits(n));Mod(n,10^#d)^n==n \\ _Charles R Greathouse IV_, Jan 02 2013

%o (Python)

%o from itertools import count

%o def A082576_gen(): # generator of terms

%o yield from (1, 5, 6, 9, 11, 16, 21, 25, 31, 36, 41, 49, 51, 56, 57, 61, 71, 75, 76, 81, 91, 93, 96, 99)

%o for i in count(100,100):

%o for j in (1, 25, 49, 51, 57, 75, 76, 93, 99):

%o m = i+j

%o if pow(m,m,10**(len(str(m)))) == m:

%o yield m

%o A082576_list = list(islice(A082576_gen(),50)) # _Chai Wah Wu_, Jun 02 2024

%Y Cf. A002283.

%K nonn,base

%O 1,2

%A _Gary W. Adamson_, May 07 2003

%E More terms from _David Wasserman_, Oct 27 2006