login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k divides Sum_{j=1..k} binomial(2j,j).
1

%I #16 Feb 14 2021 13:01:22

%S 1,2,5,8,11,12,17,23,29,41,47,53,59,71,83,89,101,107,113,130,131,137,

%T 149,167,173,179,191,196,197,227,233,238,239,251,257,263,266,269,281,

%U 293,311,317,322,347,353,359,383,389,401,419,431,443,449,461,467,479

%N Numbers k such that k divides Sum_{j=1..k} binomial(2j,j).

%H Vaclav Kotesovec, <a href="/A082406/b082406.txt">Table of n, a(n) for n = 1..4973</a>

%H Vaclav Kotesovec, <a href="/A082406/a082406.jpg">Plot of a(n)/(n*log(n)) for n = 2..10000</a>

%F Is a(n) asymptotic to c*n*log(n) with 2 < c < 2.3?

%t Select[Range[500],Divisible[Sum[Binomial[2k,k],{k,#}],#]&] (* _Harvey P. Dale_, Feb 16 2013 *)

%t A066796 = Accumulate[Table[Binomial[2*k, k], {k, 1, 1000}]]; Select[Range[Length[A066796]], Divisible[A066796[[#]], #] &] (* _Vaclav Kotesovec_, Feb 15 2019 *)

%Y Cf. A066796.

%K nonn

%O 1,2

%A _Benoit Cloitre_, Apr 23 2003