login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).
4

%I #13 Dec 03 2021 04:19:59

%S 0,1,1,1,1,5,1,3,2,7,1,7,1,9,8,1,1,4,1,9,10,13,1,3,2,15,1,11,1,1,1,5,

%T 14,19,12,5,1,21,16,11,1,2,1,15,11,25,1,11,2,6,20,17,1,11,16,13,22,31,

%U 1,1,1,33,13,3,18,8,1,21,26,1,1,1,1,39,13,23,18,3,1,13,4,43,1,1,22,45,32,17

%N Numerator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).

%C Denominator is A082344(n) = n/A082299(n).

%H Antti Karttunen, <a href="/A082343/b082343.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = A001414(n)/A082299(n).

%e n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=2, A082344(200)=25.

%t sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]];

%t a[n_] := Numerator[sopfr[n]/n];

%t Array[a, 100] (* _Jean-François Alcover_, Dec 03 2021 *)

%o (PARI)

%o A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.

%o A082299(n) = gcd(n, A001414(n));

%o A082343(n) = A001414(n)/A082299(n); \\ _Antti Karttunen_, Mar 04 2018

%Y Cf. A001414, A082299, A082344.

%K nonn,frac

%O 1,6

%A _Reinhard Zumkeller_, Apr 09 2003