Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Jan 28 2023 12:46:04
%S 13,29,45,61,77,93,109,125,141,157,173,189,205,221,237,253,269,285,
%T 301,317,333,349,365,381,397,413,429,445,461,477,493,509,525,541,557,
%U 573,589,605,621,637,653,669,685,701,717,733,749,765,781,797,813,829,845
%N a(n) = 16n + 13.
%C Solutions to (7^x + 11^x) mod 17 = 13.
%C a(n-2), n>=2, gives the second column in triangle A238476 related to the Collatz problem. - _Wolfdieter Lang_, Mar 12 2014
%H Vincenzo Librandi, <a href="/A082285/b082285.txt">Table of n, a(n) for n = 0..10000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Leo Tavares, <a href="/A082285/a082285.jpg">Illustration: Bounded Star Crosses</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 16*n + 13.
%F a(n) = 32*n - a(n-1) + 10; a(0)=13. - _Vincenzo Librandi_, Oct 10 2011
%F From _Stefano Spezia_, Dec 27 2019: (Start)
%F O.g.f.: (13 + 3*x)/(1 - x)^2.
%F E.g.f.: exp(x)*(13 + 16*x).
%F (End)
%F a(n) = A008594(n+1) + A016813(n+1) - 4. - _Leo Tavares_, Sep 22 2022
%t Range[13, 1000, 16] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)
%t LinearRecurrence[{2,-1},{13,29},60] (* _Harvey P. Dale_, Jan 28 2023 *)
%o (PARI) \\ solutions to 7^x+11^x == 13 mod 17
%o anpbn(n) = { for(x=1,n, if((7^x+11^x-13)%17==0,print1(x" "))) }
%o (Magma) [[ n : n in [1..1000] | n mod 16 eq 13]]; // _Vincenzo Librandi_, Oct 10 2011
%Y Cf. A008598, A119413, A106839, A098502.
%Y Cf. A008594, A016813.
%K easy,nonn
%O 0,1
%A _Cino Hilliard_, May 10 2003