login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082168
a(n) = A006690(n)/n^3.
1
1, 7, 295, 33251, 7319436, 2669857476, 1459913038884, 1118904543734724, 1145415466062268695, 1510492370204314777345, 2494718462461802382223714
OFFSET
1,2
REFERENCES
Valery A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
LINKS
Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
FORMULA
a(n) := A006690(n)/n^3
MATHEMATICA
b[1] = 1; b[n_] := b[n] = n^(3n)/(n-1)! - Sum[n^(3(n-i)) b[i]/(n-i)!, {i, 1, n-1}];
a[n_] := b[n]/n^3;
Array[a, 11] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
Cf. A006690.
Sequence in context: A137435 A220241 A041851 * A362658 A096348 A281435
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 09 2003
STATUS
approved