Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 19 2024 04:33:23
%S 1,3,24,328,6427,164765,5228210,197897582,8704544263,436312502297,
%T 24550259053858,1532241939881294,105048412352334420,
%U 7847739530288388636,634523723233529394594,55206024491463561241758
%N a(n) = A006689(n)/n^2.
%D Valery A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
%H Valery A. Liskovets, <a href="http://www-igm.univ-mlv.fr/~fpsac/FPSAC03/ARTICLES/5.pdf">Exact enumeration of acyclic automata</a>, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
%H Valery A. Liskovets, <a href="http://dx.doi.org/10.1016/j.dam.2005.06.009">Exact enumeration of acyclic deterministic automata</a>, Discrete Appl. Math., 154, No.3 (2006), 537-551.
%t b[n_] := b[n] = If[n == 1, 1, n^(2*n)/(n-1)! - Sum[n^(2*(n-i))*b[i]/(n-i)!, {i, 1, n-1}]];
%t a[n_] := b[n]/n^2;
%t Array[a, 16] (* _Jean-François Alcover_, Aug 28 2019 *)
%Y Cf. A006689.
%K easy,nonn
%O 1,2
%A _Valery A. Liskovets_, Apr 09 2003