Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 29 2019 09:52:20
%S 1,7,133,5362,380093,42258384,6830081860,1520132414241,
%T 447309239576913,168599289097947589,79364534944804317166,
%U 45701029702436877135199,31642128418550547009710906,25960688434777959685891570936,24926392120419324125117256758595,27708074645788511889179577045508824
%N Deterministic completely defined initially connected acyclic automata with 3 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
%C Coefficients T_2(n,k) form the array A082172. These automata have no nontrivial automorphisms (by states).
%H V. A. Liskovets, <a href="http://igm.univ-mlv.fr/~fpsac/FPSAC03/ARTICLES/5.pdf">Exact enumeration of acyclic automata</a>, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
%H V. A. Liskovets, <a href="http://dx.doi.org/10.1016/j.dam.2005.06.009">Exact enumeration of acyclic deterministic automata</a>, Discrete Appl. Math., 154, No.3 (2006), 537-551.
%F a(n) := d_3(n)/(n-1)! where d_3(n) := b_3(n, 1)-sum(binomial(n-1, j-1)*T_3(n-j, j+1)*d_3(j), j=1..n-1); and T_3(0, k) := 1, T_3(n, k) := sum(binomial(n, i)*(-1)^(n-i-1)*((i+k+1)^3-1)^(n-i)*T_3(i, k), i=0..n-1), n>0.
%t b[_, 0, _] = 1; b[k_, n_, r_] := b[k, n, r] = Sum[Binomial[n, t] (-1)^(n - t - 1) ((t + r + 1)^k - 1)^(n - t) b[k, t, r], {t, 0, n - 1}];
%t d3[n_] := d3[n] = b[3, n, 1] - Sum[Binomial[n - 1, j - 1] T3[n - j, j + 1] d3[j], {j, 1, n - 1}];
%t T3[0, _] = 1; T3[n_, k_] := T3[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + k + 1)^3 - 1)^(n - i) T3[i, k], {i, 0, n - 1}];
%t a[n_] := If[n == 1, 1, d3[n - 1]/(n - 2)!];
%t Array[a, 20] (* _Jean-François Alcover_, Aug 29 2019 *)
%Y Cf. A082160, A082163, A082162.
%K easy,nonn
%O 1,2
%A _Valery A. Liskovets_, Apr 09 2003
%E More terms from _Jean-François Alcover_, Aug 29 2019