login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array of transforms of binomial coefficients, read by antidiagonals.
14

%I #54 Feb 15 2021 02:00:54

%S 1,1,1,1,2,2,1,3,6,4,1,4,12,16,8,1,5,20,40,40,16,1,6,30,80,120,96,32,

%T 1,7,42,140,280,336,224,64,1,8,56,224,560,896,896,512,128,1,9,72,336,

%U 1008,2016,2688,2304,1152,256,1,10,90,480,1680,4032,6720,7680,5760,2560,512

%N Square array of transforms of binomial coefficients, read by antidiagonals.

%C Rows are associated with the expansions of (x^k/k!)exp(x)cosh(x) (leading zeros dropped). Rows include A011782, A057711, A080929, A082138, A080951, A082139, A082140, A082141. Columns are of the form 2^(k-1)C(n+k, k). Diagonals include A069723, A082143, A082144, A082145, A069720.

%C T(n, k) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha)= |Dom(alpha)|). - _Abdullahi Umar_, Oct 02 2008

%C Read as a triangle this is A119468 with rows reversed. A119468 has e.g.f. exp(z*x)/(1-tanh(x)). - _Peter Luschny_, Aug 01 2012

%C Read as a triangle this is a subtriangle of A198793. - _Philippe Deléham_, Nov 10 2013

%H G. C. Greubel, <a href="/A082137/b082137.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Laradji, A. and Umar, <a href="http://dx.doi.org/10.1016/j.jalgebra.2003.10.023">A. Combinatorial results for semigroups of order-preserving partial transformations</a>, Journal of Algebra 278, (2004), 342-359.

%H Laradji, A. and Umar, A. <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Umar/um.html">Combinatorial results for semigroups of order-decreasing partial transformations</a>, J. Integer Seq. 7 (2004), 04.3.8.

%F Square array defined by T(n, k)=(2^(n-1)+0^n/2)C(n + k, n)= Sum{k=0..n, C(n+k, k+j)C(k+j, k)(1+(-1)^j)/2 }.

%F As an infinite lower triangular matrix, equals A007318 * A134309. - _Gary W. Adamson_, Oct 19 2007

%F O.g.f. for array read as a triangle: (1-x*(1+t))/((1-x)*(1-x*(1+2*t))) = 1 + x*(1+t) + x^2*(1+2*t+2*t^2) + x^3*(1+3*t+6*t^2+4*t^3) + .... - _Peter Bala_, Apr 26 2012

%F For array read as a triangle: T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) -2*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Nov 10 2013

%e Rows begin

%e 1 1 2 4 8 ...

%e 1 2 6 16 40 ...

%e 1 3 12 40 120 ...

%e 1 4 20 80 280 ...

%e 1 5 30 140 560 ...

%e Read as a triangle, this begins:

%e 1

%e 1, 1

%e 1, 2, 2

%e 1, 3, 6, 4

%e 1, 4, 12, 16, 8

%e 1, 5, 20, 40, 40, 16

%e 1, 6, 30, 80, 120, 96, 32

%e ... - _Philippe Deléham_, Nov 10 2013

%p # As a triangular array:

%p T := (n,k) -> 2^(k+0^k-1)*binomial(n,k):

%p for n from 0 to 9 do seq(T(n,k), k=0..n) od; # _Peter Luschny_, Nov 10 2017

%t rows = 11; t[n_, k_] := 2^(n-1)*(n+k)!/(n!*k!); t[0, _] = 1; tkn = Table[ t[n, k], {k, 0, rows}, {n, 0, rows}]; Flatten[ Table[ tkn[[ n-k+1, k ]], {n, 1, rows}, {k, 1, n}]] (* _Jean-François Alcover_, Jan 20 2012 *)

%o (Sage)

%o def A082137_row(n) : # as a triangular array

%o var('z')

%o s = (exp(z*x)/(1-tanh(x))).series(x,n+2)

%o t = factorial(n)*s.coefficient(x,n)

%o return [t.coefficient(z,n-k) for k in (0..n)]

%o for n in (0..7) : print(A082137_row(n)) # _Peter Luschny_, Aug 01 2012

%Y Cf. A119468, A007318, A134309.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Apr 06 2003