login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082123
Smallest difference > 1 between d and p/d for any divisor d of the partial product p of the sequence, starting with 17.
2
17, 16, 26, 36, 76, 94, 432, 37220, 996768, 158267352, 973348166592, 8429202561226344, 419324164827901536306744, 339991740461303603766175692597227316, 12025891484499365294341150949542442100059557280661504
OFFSET
1,1
MAPLE
branch:= proc(m, dm, bestyet)
local t, x, nby, r;
nby:= bestyet;
for t from F[m][2] by -1 to 0 do
x:= dm*F[m][1]^t;
if x >= nby then next
elif x >= c then nby:= x
elif (x*R[m] < c) or (m=nF) then break
else nby:= branch(m+1, x, nby);
fi
od;
nby
end proc:
P:= 17: A[1]:= 17:
for n from 2 to 15 do
c:= ceil(1/2+1/2*sqrt(5+4*P));
while not type(c, integer) do Digits:= 2*Digits; c:= eval(c) od:
F:= ifactors(P)[2]; nF:= nops(F);
F:= sort(F, (s, t)->s[1]>t[1]);
R:= [seq(mul(F[i][1]^F[i][2], i=j+1..nF), j=1..nF)];
d:= branch(1, 1, P);
A[n]:= d - P/d;
P:= P*A[n]
od:
seq(A[n], n=1..15); # Robert Israel, May 20 2015
PROG
(PARI) p=17; print1(p, ", "); for(n=1, 13, r=floor(sqrt(p)); d1=1; d2=1; nE=omega(p); P=factor(p); E=P[, 2]; P=P[, 1]; forvec(v=vector(nE, i, [0, E[i]]), x=prod(k=1, nE, P[k]^v[k]); if(x<=r && x>=d2, d1=d2; d2=x, if(x<=d2 && x>=d1, d1=x))); difer=p/d2-d2; if(difer<=1, difer=p/d1-d1); print1(difer", "); p*=difer)
CROSSREFS
Cf. A082120, A003681 (starts with 2, 3), A082124.
Sequence in context: A022973 A023459 A004458 * A368929 A273973 A172091
KEYWORD
nonn,hard,more
AUTHOR
Ralf Stephan, Apr 04 2003
EXTENSIONS
a(12) from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 02 2006
a(13) from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 14 2006
a(14) and a(15) from Robert Israel, May 20 2015
STATUS
approved