login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of divisors of n that are not of the form 3k+2.
4

%I #17 Jan 06 2024 09:21:15

%S 1,1,4,5,1,10,8,5,13,11,1,26,14,8,19,21,1,37,20,15,32,23,1,50,26,14,

%T 40,40,1,65,32,21,37,35,8,89,38,20,56,55,1,80,44,27,73,47,1,114,57,36,

%U 55,70,1,118,56,40,80,59,1,141,62,32,104,85,14,131,68,39,73,88,1,185

%N Sum of divisors of n that are not of the form 3k+2.

%H Vincenzo Librandi, <a href="/A082051/b082051.txt">Table of n, a(n) for n = 1..10000</a>

%F a(A003627(n)) = 1.

%F G.f.: Sum_{k>=1} x^k*(1 + 3*x^(2*k) + 2*x^(3*k))/(1 - x^(3*k))^2. - _Ilya Gutkovskiy_, Sep 12 2019

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - _Amiram Eldar_, Jan 06 2024

%t sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 2) / 3]&]]; Array[sd, 100] (* _Vincenzo Librandi_, May 17 2013 *)

%o (PARI) for(n=1,100,print1(sumdiv(n,d,if(d%3!=2,d))","))

%o (PARI)

%o N = 66; x = 'x + O('x^N);

%o gf = sum(n=1,N, (3*n-2)*x^(3*n-2)/(1-x^(3*n-2)) + (3*n)*x^(3*n)/(1-x^(3*n)) );

%o v = Vec(gf)

%o \\ _Joerg Arndt_, May 17 2013

%Y Cf. A000203, A003627, A027748, A046913, A078181, A078182, A082050, A086463, A326394.

%K nonn,easy

%O 1,3

%A _Ralf Stephan_, Apr 02 2003