login
a(1)=6; a(n) is concatenation of the squares of each digit of a(n-1), in order (in base 10).
1

%I #6 Feb 28 2013 09:21:05

%S 6,36,936,81936,64181936,3616164181936,93613613616164181936,

%T 819361936193613613616164181936,

%U 641819361819361819361936193613613616164181936

%N a(1)=6; a(n) is concatenation of the squares of each digit of a(n-1), in order (in base 10).

%C If m is a member of the sequence consisting of k base-10 digits, every member of the sequence greater than m is congruent to m modulo 10^k.

%e a(4)=81936 because the squares of the digits of a(3)--namely, 9, 3 and 6--are 81, 9 and 36 respectively.

%t NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^2)]]&,6,10] (* _Harvey P. Dale_, Feb 28 2013 *)

%Y Cf. A061588, A082026.

%K base,easy,nonn

%O 1,1

%A _Matthew Vandermast_, Apr 01 2003