|
|
A082022
|
|
In the following square array a(i,j) = Least Common Multiple of i and j. Sequence contains the product of the terms of the n-th antidiagonal.
|
|
1
|
|
|
1, 4, 18, 576, 1200, 518400, 1587600, 180633600, 1646023680, 13168189440000, 461039040000, 229442532802560000, 86553098311680000, 3753113311877529600, 834966920275488000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If n is even and n+1 is prime, a(n) = n^2 * (n-1)!^2. If n is odd and >3, 2*(n+1)*a(n) is a perfect square, the root of which has the factor 1/2*n*(n-1)*((n-1)/2)!. This was proved by Lawrence Sze. - Ralf Stephan, Nov 16 2004
|
|
LINKS
|
|
|
FORMULA
|
Prod(k=1...n, lcm(k, n+1-k)).
|
|
EXAMPLE
|
1 2 3 4 5...
2 2 6 4 10...
3 6 3 12 15...
4 4 12 4 20...
5 10 15 20 5...
...
The same array in triangular form is
1
2 2
3 2 3
4 6 6 4
5 4 3 4 5
...
Sequence contains the product of the terms of the n-th row.
|
|
PROG
|
(PARI) for(n=1, 20, p=1:for(k=1, n, p=p*lcm(k, n+1-k)):print1(p", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|