|
|
A081979
|
|
Smallest Fibonacci number with 2n divisors, or 0 if no such number exists.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Further known entries are a(12)=A000045(91); a(16)=A000045(44); a(24)=A000045(50); a(32)=A000045(30); a(36)=A000045(24); a(48)=A000045(56); a(64)=A000045(54); a(80)=A000045(36); a(96)=A000045(182); a(128)=A000045(128) ; a(168)=A000045(48); a(192)=A000045(110); a(256)=A000045(80),..., a(688128)=A000045(240) from the Kelly factorizations. - R. J. Mathar, Apr 05 2007
For n prime, a(n) = q*p^(n-1) or p^(2n-1) for some primes p and q since those are the only numbers with 2*n divisors. a(8) = 2584. - Chai Wah Wu, Dec 08 2014
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Blair Kelly, Fibonacci Factorizations.
|
|
EXAMPLE
|
a(2)=8 because 8 is the smallest Fibonacci number with 4 divisors (1,2,4,8).
|
|
CROSSREFS
|
Cf. A081978.
Sequence in context: A007753 A272331 A256065 * A012672 A024340 A012667
Adjacent sequences: A081976 A081977 A081978 * A081980 A081981 A081982
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Amarnath Murthy, Apr 03 2003
|
|
EXTENSIONS
|
Corrected by Emeric Deutsch, Apr 19 2005
|
|
STATUS
|
approved
|
|
|
|