A081972


Consider the geometric progression 1,1/2,1/4,1/8,1/16,1/32,1/64,... Group the terms such that the nth group contains n terms like this (1/1),(1/2,1/4),(1/8,1/16,1,32),(1/64,1/128,1/256,1/512),... a(n) = floor[1/s(n)] where s(n) is the sum of the members of the nth group.


0


%I
%S 1,1,4,34,528,16644,1056832,134744072,34426978560,17609382707216,
%T 18023198899569664,36902497546234101792,151134176447977081540608,
%U 1238015601761073699807559744,20283028592561355523908308058112
%N Consider the geometric progression 1,1/2,1/4,1/8,1/16,1/32,1/64,... Group the terms such that the nth group contains n terms like this (1/1),(1/2,1/4),(1/8,1/16,1,32),(1/64,1/128,1/256,1/512),... a(n) = floor[1/s(n)] where s(n) is the sum of the members of the nth group.
%F a(n) = floor((2^(n*(n+1)/2  1))/(2^n1)).
%K nonn
%O 1,3
%A _Amarnath Murthy_, Apr 03 2003
%E Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 08 2003
