login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that both k*(k + 1) + 1 and k*(k - 1) + 1 are primes.
2

%I #37 Sep 08 2022 08:45:09

%S 2,3,6,15,21,78,90,111,162,168,189,246,279,288,405,435,456,531,567,

%T 762,819,960,993,1002,1092,1098,1149,1182,1275,1365,1422,1443,1449,

%U 1548,1560,1659,1701,1848,1932,1974,2016,2163,2205,2373,2430,2451,2484,2541

%N Numbers k such that both k*(k + 1) + 1 and k*(k - 1) + 1 are primes.

%C Numbers k such that k^4 + k^2 + 1 is a semiprime (A001358). - _Thomas Ordowski_, Sep 24 2015

%H T. D. Noe, <a href="/A081945/b081945.txt">Table of n, a(n) for n = 1..1000</a>

%e 6 is a term since both 6*7 + 1 = 43 and 6*5 + 1 = 31 are primes.

%t Select[Range[3000], PrimeQ[# (# - 1) + 1] && PrimeQ[# (# + 1) + 1] &] (* _T. D. Noe_, Apr 06 2012 *)

%t Select[Range[2, 3000], Plus@@Last/@FactorInteger[(#^6 - 1) / (#^2 - 1)] == 2 &] (* _Vincenzo Librandi_, Sep 24 2015 *)

%t Select[Range[2600],PrimeOmega[#^4+#^2+1]==2&] (* _Harvey P. Dale_, Jun 04 2019 *)

%o (Magma) [n: n in [0..3000] | IsPrime(n^2+n+1) and IsPrime(n^2-n+1)]; // _Vincenzo Librandi_, Sep 24 2015

%o (PARI) for(n=1, 1e3, if (isprime(n*(n+1)+1) && if (isprime(n*(n-1)+1), print1(n", ")))) \\ _Altug Alkan_, Sep 24 2015

%Y Cf. A081944.

%K nonn,easy

%O 1,1

%A _Amarnath Murthy_, Apr 02 2003

%E More terms from _Don Reble_, Apr 08 2003