login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081783
Continued cotangent for zeta(2)=Pi^2/6.
0
1, 4, 172, 181307, 241328833528, 824652019956267685427678, 768422457901766762303892554138930904416139509281, 2110688056630901907060877896737932376507936264268382076456539236145849709148481095915090382331184
OFFSET
0,2
FORMULA
Pi^2/6=cot(sum(n>=0, n, (-1)^n*acot(a(n))); let b(0)=Pi^2/6, b(n)=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)) then a(n)=floor(b(n))
PROG
(PARI) ?bn=vector(100); b(n)=if(n<0, 0, bn[n]); bn[1]=Pi^2/6; ?for(n=2, 10, bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))) ?a(n)=floor(b(n+1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 10 2003
STATUS
approved