login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued cotangent for the Gamma constant.
0

%I #10 Mar 30 2012 18:39:16

%S 0,1,3,16,389,479403,590817544217,473341703003810973963339,

%T 269963674630454468003021997747122421847127276823,

%U 84255020180725066155718508782582560544360994462142096519461567461295107080386955008872752275165

%N Continued cotangent for the Gamma constant.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LehmerCotangentExpansion.html">Lehmer Cotangent Expansion</a>

%F Gamma=cot(sum(n>=0, n, (-1)^n*acot(a(n))); let b(0)=Gamma, b(n)=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)) then a(n)=floor(b(n))

%o (PARI) ?bn=vector(100); b(n)=if(n<0,0,bn[n]); bn[1]=Euler; ?for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))) ?a(n)=floor(b(n+1))

%Y Cf. A001620, A002666, A002667.

%K nonn

%O 0,3

%A _Benoit Cloitre_, Apr 10 2003