login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bracelets of n beads in up to n colors.
19

%I #49 Nov 26 2020 16:15:53

%S 1,3,10,55,377,4291,60028,1058058,21552969,500280022,12969598086,

%T 371514016094,11649073935505,396857785692525,14596464294191704,

%U 576460770691256356,24330595997127372497,1092955780817066765469,52063675152021153895330,2621440000054016000176044

%N Number of bracelets of n beads in up to n colors.

%C T(n,n), T given in A081720.

%C From _Olivier Gérard_, Aug 01 2016: (Start)

%C Number of classes of functions of [n] to [n] under rotation and reversal.

%C .

%C Classes can be of size between 1 and 2n

%C depending on divisibility properties of n.

%C .

%C n 1 2 3 4 5 n 2n

%C ----------------------------------------

%C 1 1

%C 2 2 1

%C 3 3 0 6 1

%C 4 4 6 0 30 15

%C 5 5 0 0 120 252

%C 6 6 15 30 725 3515

%C 7 7 0 0 2394 57627

%C .

%C (End)

%H Alois P. Heinz, <a href="/A081721/b081721.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) ~ n^(n-1) / 2. - _Vaclav Kotesovec_, Mar 18 2017

%t Table[CycleIndex[DihedralGroup[n],s]/.Table[s[i]->n,{i,1,n}],{n,1,20}] (* _Geoffrey Critzer_, Jun 18 2013 *)

%t t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a[n_] := t[n, n]; Array[a, 20] (* _Jean-François Alcover_, Nov 02 2017, after Maple code for A081720 *)

%Y Cf. A000312 All endofunctions

%Y Cf. A000169 Classes under translation mod n

%Y Cf. A001700 Classes under sort

%Y Cf. A056665 Classes under rotation

%Y Cf. A168658 Classes under complement to n+1

%Y Cf. A130293 Classes under translation and rotation

%Y Cf. A275549 Classes under reversal

%Y Cf. A275550 Classes under reversal and complement

%Y Cf. A275551 Classes under translation and reversal

%Y Cf. A275552 Classes under translation and complement

%Y Cf. A275553 Classes under translation, complement and reversal

%Y Cf. A275554 Classes under translation, rotation and complement

%Y Cf. A275555 Classes under translation, rotation and reversal

%Y Cf. A275556 Classes under translation, rotation, complement and reversal

%Y Cf. A275557 Classes under rotation and complement

%Y Cf. A275558 Classes under rotation, complement and reversal

%Y Row sums of partition array A213941.

%Y Main diagonal of A321791.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, based on information supplied by _Gary W. Adamson_, Apr 05 2003

%E Name changed by _Olivier Gérard_, Aug 05 2016

%E Name revised by _Álvar Ibeas_, Apr 20 2018