login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Poly-Bernoulli numbers.
3

%I #20 Aug 29 2024 21:10:47

%S 0,1,8,50,286,1566,8358,43870,227606,1170926,5985958,30454590,

%T 154371126,780246286,3934789958,19808175710,99577765846,500036345646,

%U 2508771728358,12578218511230,63028531771766,315692415197006,1580661100289158,7912101596565150,39595692359108886

%N Generalized Poly-Bernoulli numbers.

%C Binomial transform of A081674. Second binomial transform of A027649.

%H Vincenzo Librandi, <a href="/A081675/b081675.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-38,40).

%F a(n) = (4*5^n - 3*4^n - 2^n)/6.

%F G.f.: x*(1-3*x)/((1-2*x)*(1-4*x)*(1-5*x)).

%F From _Elmo R. Oliveira_, Aug 29 2024: (Start)

%F E.g.f.: exp(2*x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6.

%F a(n) = 11*a(n-1) - 38*a(n-2) + 40*a(n-3) for n > 2. (End)

%o (Magma) [(4*5^n-3*4^n-2^n)/6: n in [0..30]]; // _Vincenzo Librandi_, Jul 17 2011

%Y Cf. A018678, A027649, A081674.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 28 2003