login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2).
8

%I #44 Apr 03 2024 10:07:32

%S 1,1,0,1,0,-1,1,0,-3,0,1,0,-6,0,5,1,0,-10,0,25,0,1,0,-15,0,75,0,-61,1,

%T 0,-21,0,175,0,-427,0,1,0,-28,0,350,0,-1708,0,1385,1,0,-36,0,630,0,

%U -5124,0,12465,0,1,0,-45,0,1050,0,-12810,0,62325,0,-50521,1,0,-55,0,1650,0,-28182,0,228525,0,-555731,0,1,0,-66,0,2475,0

%N Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2).

%C These are the coefficients of the Swiss-Knife polynomials A153641. - _Peter Luschny_, Jul 21 2012

%C Nonzero diagonals of the triangle are of the form A000364(k)*binomial(n+2k,2k)*(-1)^k.

%C A363393 is the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers). - _Peter Luschny_, Jun 05 2023

%F Coefficients of the polynomials in k in the binomial transform of the expansion of 2/(exp(kx)+exp(-kx)).

%F From _Peter Luschny_, Jul 20 2012: (Start)

%F p{n}(0) = Signed Euler secant numbers A122045.

%F p{n}(1) = Signed Euler tangent numbers A155585.

%F p{n}(2) has e.g.f. 2*exp(x)/(exp(-2*x)+1) A119880.

%F 2^n*p{n}(1/2) = Signed Springer numbers A188458.

%F 3^n*p{n}(1/3) has e.g.f. 2*exp(4*x)/(exp(6*x)+1)

%F 4^n*p{n}(1/4) has e.g.f. 2*exp(5*x)/(exp(8*x)+1).

%F Row sum: A155585 (cf. A009006). Absolute row sum: A003701.

%F The GCD of the rows without the first column: A155457. (End)

%F From _Peter Luschny_, Jun 05 2023: (Start)

%F T(n, k) = [x^(n - k)] Euler(k) / (1 - x)^(k + 1).

%F For a recursion see the Python program.

%F Conjecture: If n is prime then n divides T(n, k) for 1 <= k <= n-1. (End)

%e The triangle begins

%e [0] 1;

%e [1] 1, 0;

%e [2] 1, 0, -1;

%e [3] 1, 0, -3, 0;

%e [4] 1, 0, -6, 0, 5;

%e [5] 1, 0, -10, 0, 25, 0;

%e [6] 1, 0, -15, 0, 75, 0, -61;

%e [7] 1, 0, -21, 0, 175, 0, -427, 0;

%e ...

%e From _Peter Luschny_, Sep 17 2021: (Start)

%e The triangle shows the coefficients of the following polynomials:

%e [1] 1;

%e [2] 1 - x^2;

%e [3] 1 - 3*x^2;

%e [4] 1 - 6*x^2 + 5*x^4;

%e [5] 1 - 10*x^2 + 25*x^4;

%e [6] 1 - 15*x^2 + 75*x^4 - 61*x^6;

%e [7] 1 - 21*x^2 + 175*x^4 - 427*x^6;

%e ...

%e These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to '-x'. The main antidiagonals consist only of ones. Substituting x <- 1 generates the Euler tangent numbers A155585. (Compare with A046739.)

%e (End)

%p ogf := n -> euler(n) / (1 - x)^(n + 1):

%p ser := n -> series(ogf(n), x, 16):

%p T := (n, k) -> coeff(ser(k), x, n - k):

%p for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # _Peter Luschny_, Jun 05 2023

%p T := (n, k) -> (-2)^k*binomial(n, k)*euler(k, 1/2):

%p seq(seq(T(n, k), k = 0..n), n = 0..9); # _Peter Luschny_, Apr 03 2024

%t sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n - k), {k, 0, n}];

%t Table[CoefficientList[sk[n, x], x] // Reverse, {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 04 2019 *)

%o (Sage)

%o R = PolynomialRing(ZZ, 'x')

%o @CachedFunction

%o def p(n, x) :

%o if n == 0 : return 1

%o return add(p(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])

%o def A081658_row(n) : return [R(p(n,x)).reverse()[i] for i in (0..n)]

%o for n in (0..8) : print(A081658_row(n)) # _Peter Luschny_, Jul 20 2012

%o (Python)

%o from functools import cache

%o @cache

%o def T(n: int, k: int) -> int:

%o if k == 0: return 1

%o if k % 2 == 1: return 0

%o if k == n: return -sum(T(n, j) for j in range(0, n - 1, 2))

%o return (T(n - 1, k) * n) // (n - k)

%o for n in range(10):

%o print([T(n, k) for k in range(n + 1)]) # _Peter Luschny_, Jun 05 2023

%Y Row reversed: A119879.

%Y Cf. A000364, A046739, A155585, A363393.

%K easy,sign,tabl

%O 0,9

%A _Paul Barry_, Mar 26 2003

%E Typo in data corrected by _Peter Luschny_, Jul 20 2012

%E Error in data corrected and new name by _Peter Luschny_, Apr 03 2024