login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2*5^n-1.
22

%I #19 Sep 08 2022 08:45:09

%S 1,9,49,249,1249,6249,31249,156249,781249,3906249,19531249,97656249,

%T 488281249,2441406249,12207031249,61035156249,305175781249,

%U 1525878906249,7629394531249,38146972656249,190734863281249

%N 2*5^n-1.

%C Binomial transform of A081654. Inverse binomial transform of A081656.

%H Vincenzo Librandi, <a href="/A081655/b081655.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5).

%F G.f.: (1+3*x)/((1-5*x)*(1-x)).

%F E.g.f. 2*exp(5*x)-exp(x).

%F a(n) = 5*a(n-1)+4, with a(0)=1. - _Vincenzo Librandi_, Aug 01 2010

%t CoefficientList[Series[(1 + 3 x) / ((1 - 5 x) (1 - x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 10 2013 *)

%t NestList[5#+4&,1,30] (* _Harvey P. Dale_, Jul 04 2014 *)

%o (Magma) [2*5^n-1: n in [0..30]]; // _Vincenzo Librandi_, Aug 10 2013

%o (PARI) a(n)=2*5^n-1 \\ _Charles R Greathouse IV_, Sep 24 2015

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 26 2003