login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*(-1)^n - (-5)^n.
1

%I #28 Dec 06 2023 08:33:59

%S 1,3,-23,123,-623,3123,-15623,78123,-390623,1953123,-9765623,48828123,

%T -244140623,1220703123,-6103515623,30517578123,-152587890623,

%U 762939453123,-3814697265623,19073486328123,-95367431640623,476837158203123,-2384185791015623,11920928955078123

%N a(n) = 2*(-1)^n - (-5)^n.

%C Inverse binomial transform of A081629.

%H Vincenzo Librandi, <a href="/A081628/b081628.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-6,-5).

%F G.f.: (1+9*x)/((1+x)*(1+5*x)).

%F E.g.f.: 2*exp(-x) - exp(-5*x).

%F a(n) = A033999(n)*(2 - A000351(n)). - _Elmo R. Oliveira_, Dec 05 2023

%t CoefficientList[Series[(1 + 9 x) / ((1 + x) (1 + 5 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 09 2013 *)

%t LinearRecurrence[{-6,-5},{1,3},30] (* _Harvey P. Dale_, Jan 08 2021 *)

%o (Magma) [2*(-1)^n-(-5)^n: n in [0..25]]; // _Vincenzo Librandi_, Aug 09 2013

%Y Cf. A000351, A033999, A081629.

%K easy,sign

%O 0,2

%A _Paul Barry_, Mar 26 2003